C.U.SHAH UNIVERSITY Summer Examination-2018

Subject Name: Engineering Mathematics-III

Subject Code: 4TE03EMT1		Branch: B.Tech (All)		
Semester: 3	Date: 20/03/2018	Time: 02:30 To 05:30	Marks: 70	

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1	Attempt the following questions:	(14)
a)	State Dirichlet's conditions for Fourier series.	(02)
b)	State second shifting theorem.	(02)
c)	Find: $L(4-\sin^2 t - \cos^2 t)^3$	(02)
d)	Solve: $(D^3 + D)y = 0$	(02)
e)	Find: $L(t^4e^{3t})$	(02)
f)	Solve: $r-s-6t=0$	(02)
g)	Derive the iterative formula for finding the reciprocal of positive number N by Newton-Raphson method.	(02)

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions

a) Obtain the constant term and the co-efficient of the first sine and cosine terms in the (07) Fourier expansion of y as given in the following table:

(14)

x	0	1	2	3	4	5
У	9	18	24	28	26	20

b) Solve the differential equation $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$; $u(0, y) = 8e^{-3y}$ by the method of separation (07) of variables.

Page 1 of 3

Q-3	Attempt all questions	(14)
a)	Obtain Fourier series for $f(x) = x + x^2$ in $(-\pi, \pi)$.	(05)
b)	Obtain a formula for finding the q th root of a positive integer N and find the value of $\sqrt{28}$ by Newton-Raphson method up to four significant digits.	(05)
c)	Solve: $(D+1)^2 y = \sinh x$	(04)
Q-4	Attempt all questions	(14)
a)	Find the Fourier series of $f(x) = \begin{cases} x & -1 < x < 0 \\ x+2 & 0 < x < 1 \end{cases}$.	(05)
b)	State convolution theorem and using it find $L^{-1}\left(\frac{1}{(s-2)(s+2)^2}\right)$.	(05)
c)	Find the general solution of the differential equation $(y+z)p+(z+x)q = x+y$.	(04)
Q-5	Attempt all questions	(14)
a)	Solve the differential equation $(D^3 - 6D^2 + 12D - 8)y = \frac{e^{2x}}{x}$ by the method of	(05)
	variation of parameter.	
b)	Solve: $(D^2 - 1)y = x \sin 3x$	(05)
	× ×	

c) Evaluate:
$$\int_{0}^{t} t e^{-2t} \cos t \, dt$$
 (04)

Q-6 Attempt all questions

(14)

(14)

(14)

- a) Find Laplace transformation of $\sin 2t$ and $\cos 2t$ by using the definition of it. (05)
- **b**) Find the root of the equation $x^3 x + 1 = 0$ by bisection method up to three decimal (05) places.
- c) Obtain a cosine series for the function $f(x) = e^x$ in the range (0,1). (04)

Q-7 Attempt all questions

a) Solve the differential equation $(D^2 + 2D + 5)y = e^{-t} \sin t$, y(0) = 0, y'(0) = 1 by using (07) laplace transformation.

b) Find the roots of equation $\cos x - xe^x = 0$ by using secant method correct up to four (04) decimal places.

c) Find:
$$L^{-1}\left(\tan^{-1}\frac{2}{s^2}\right)$$
 (03)

Q-8 Attempt all questions

Page 2 of 3

a) Solve:
$$(x^2D^2 + 5xD + 3)y = \frac{\log x}{x^2}$$
 (05)

b) Solve:
$$\frac{\partial^2 z}{\partial x \partial y} = \sin x \sin y$$
, given that $\frac{\partial z}{\partial y} = -2\sin y$ when $x = 0$ and $z = 0$ when y is an (05) odd multiple of $\frac{\pi}{2}$.

c) Form the partial differential equation
$$F(x + y + z, xyz) = 0.$$
 (04)

Page 3 of 3

